_— _

S B o

BBN Systems and Technologies Corporation

A Subsidian

Report ~o.

————— AD-A214 585

of Bolt Beranek and Newman Inc.

7142

ACCESS TO MULTIPLE UNDERLYING
SYSTEMS IN JANUS

Ve

Philip Resnik

September

ELECTE

1989

Submitted by:

BBN Systzms and Technologies Corporation

10 Moulton Sueet

Cambridg:. MA 02138
rmgsa-_@@@,szmm.‘_._m A

Submitted : - Appjov.e?:”i-clr’ -:>:§::-_:?~§T:;i028(-

Defense A anced Research Projects Agency (DARPA)

1400 Wil: - Blvd.

Arlington, VA 22209

— y 311 S0 19
8 O 1 L ~u 048

Copynght

) 1988 BBN Systems and Technologies Corporation

EEEEE——,—— R R R,

Report No. 7142

ACCESS TO MULTIPLE UNDERLYING
SYSTEMS IN JANUS

Philip Resnik
Accesion Far T 7
NTIS Ci uhhl
DTIC Trs] !
U"\JHHUW’ [T | \-l
September 1989 Justtesi _,___J
———— I T
Ey @'Z\Q(’@_ !
. OistMovs g q—-hﬂj
Submitted by: S
O R RIRLY s !
BBN Systems and Technologies Corporation T AL ‘f"'”‘—““}
10 Moulton Street Dist | ... i
Cambridge, MA 02138 . ;
Al
Submitted to: AR B S

Defense Advanced Research Projects Agency (DARPA)
1400 Wilson Blvd.
Arlington, VA 22209

Copyright (C) 1988 BBN Systems and Technologies Corporation

BBN Systems and Technologies Corporation Report No. 7142

This research was supported by the Advanced Research Projects Agency of the
Department of Defense and was monitored by ONR under Contract No. 00014-85-C-0016.
The views and conclusions contained in this document are those of the author and should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Defense Advancea Research Projects Agency or the U.S. Government.

Copyright © 1989 BBN Systems and Technologies Corporation

e —————————————————

REPORT DOCUMENTATION PAGE

Ferwn Asgreoved
Oheg ma. 07080108

Va. REPOAT LECURTY CLASSHICATION
UNCLASSIFIED

18 AESTRICTIVE MARIUNGS

28, SECURITY CLASSIFICATION AMTROAITY

6. DEQASSIFICATION / COWNGAADWG SCHEDWULE

3. OISTRIBUTION 7 AVARLABWITY OF REPORT

& PERFORMING ORGANUATION REPORT NUMSENS)
7142

S. MOMITORING QRGANUATION REPORT MUMBEASS)

6a. NAME OF PERFOQRAMING ORGAMNILATION
BBN Systems and Technologies

Corporation .

Ta. bt OF MOMITORING ORGANUATION

Office of Naval Research

6. ADORESS (Cry, Stsre, ana LP Coow)
10 Moulton Street

75. ADORESS (Crty, State, ona I Coow)
Department of the XNavy

Cambridge, MA 02138 Arlington, VA 22217
8a. NAME OF FUNOING / SPONSORING 80. OFFICE STEIBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (Y spphcatiy
Befens% Advanced Research DARPA ISTO
rojects Agency

8¢ ADORESS (Cty, State, ana LP Cooe) 10. SOURCE OF FUNDWG NUMBERS

1400 Wilson Blvd. PROGRAM PROECT TAS WORK Ut
Arlington, VA 22209 ELEMENT NO. | NO. NO. ACCESSION NO.
11, TINLE (inchuoe Seasrty Cacuncioany .

Access to Multiple Underlying Systems in,Janus '

12, PERSONAL AUTHOR(S)
11e. TYPE OF REPORT 130 TimME COVERED - 1 TE OF REPORT (Year, Manen, Doy} |15. PAGE COUNT
Interim Technical Rept} smom 10 1‘986, September(34

16. SUPPLEMENTARY NOTANON

172, COSATI CCOES
HELD GROUP SUS-GROUP

18, SULECT TRAMS (Contmum an reverse if necessary arxd «ently Oy DIOCK ruamoer)

Janus, Irus, Code Generation, Natural Language Interfaces

19. ABSTRACT (Contrue on reverse if Necessdry and ensly iy MO NumoeT©)

" The job of the back-erd of any natural language interface is to translate a logical description of
what the user wants (a request) into an efficient plan for fulfilling that request. Typically the request is to
produce data fro some underlying system; that is, the database, applications program, or other systen with
which the user is communicating by means of the interface. There has been a fair amount of work on the
problem of natural language interfaces to single underlying systems.

As computer systems become more complex, there is more opp.. ity for combining the
strengths of more than one system in order 1o perform a task. For example, on might imagine combining
several resources: a database for storing relational information with an applications program to perform
calculations based on that information, an expert system to perform inferences, and a display system to
present data in a useful way. In such an environment a *seamless” natural language interface can become a
very effective tool, allowing the user to retrieve and manipulate information without needing to pay
attention to the details of any particular resource. -

<. OISTRIBUTION/ AVAIASILTY CF ASSTRACT
LR UNCLASSIFIEDAINLIMITED) SAME AS RPT T om usees
L 43 NAME QF RESPONSBLE NOIVIOUAL

21. ASSTRACT SECURITY CLASSIFICATION
Unclassified

225. TELEPHONE (inCiuwcw #< 8 Couet 1 22¢. OFFICE SYMBOL

CO Faem 1473, JUN 86

Previous edBiory sre 0OsOreTE., SECURITY CLASSIFICATION OF Twiy PAGE

Cont, from Section !9.,.

The back-end of such an interface, however, is necessarily more complex: not only must it be able
to translate the user's request into executable code, but it must also be capable of organizing the various
resources at its disposal. choosing which combination of resources to use, and supervising the transfer of
data among them. We call this the multiple underlying systems (MUS) problem. This document describes
one approach to the MUS problem, a MUS component implemented as part of the back end of the Janus
natural language interface.

Report No. 7142

WY -

BBN Systems and Technologies Corporation

Table of Contents

Introduction
The Type System
Normalizing WML Expressions

3.1 Exiensionalizing Intensional Subexpressions

3.2 Disjunctuive Normal Form

3.3 Eliminating Equivalences

3.4 System-independent Rewrites

3.5 Pantfunctions

3.6 Examples of Normal Form
Servers and Services
Formulation

5.1 Partial Solutions

5.2 Matches

5.3 The Formulagon Algorithm

5.4 Formulation and Embedded Contexts
Execution Planning

6.1 Partial Execution Plans

6.2 Partitioning and Establishing Dependencies

6.3 Servers’ Execution Planners
Execution

7.1 Combiming Data

7.2 Servers’ Execution Functions
Status and Extensions

8.1 Expernience

8.2 Limitations and Extensions

-

I N o N o A e TV RV

-

—_—— e —
o <Je NN SN]

20

Report No. 7142 BBXN Systems and Technologies Corporativn

1 Introduction

The job of the back-end of any natural language interface is to transhate a logical descnption of what the user
wants (a request) into an efficient plan for fulfilling that request. Typically the request 1z 1o produce data from some
nnderlving svstem: that is, the database. applications program, or other sy stem with which the user is communicating
by means of the interface. There has been a fair amount of work on the problem of natural language interfaces to

single underlying systems, for example. [S].

As computer systems become more complex, there is more opportunity for combirung the strengths of more
than one system in order to perform a task. For example, one might imagine combirung several resources: a
database for stonisg reissonal information with an applications program to perform calculations based on that
information, an expernt system to perform inferences. and a display system to present data in a useful way. In such
an environment a “seamless” natural language interface can become a veny etfecuve tool, allowing the user to

retricve and manipulate information without needing to pay attention to the details of any particular resource.

The back-end of such an interface. however. is necessanly more complex: not only must it be able to translate
the user’s request into executable code. but it must also be capable of organizing the vanous resources at its
disposal, choosing which combination of resources to use. and supervising the transfer of data amonyg them. We call
this the multiple underlving systems (NUS) problem. This document descnbes one approach to the MUS problem. a

MUS component implemented as part of the back end of the Janus natural language interface

We begin in section 2 with a brief descripton of Janus' npe syvstem. a component of the semantic
interpretation language (WML, for World Model Language) that plays an important role in both front-end and
back-end processing. Section 3 describes the translation of WML expressions into a simplified. normalized form.
Section 4 discusses the way that the system represents the capabilities of underlying systems. Section 5 descrnibes
the algorithm used for finding an effective combination of the services provided by the underlying systems. in order
to satisfy a given request. Section 6 describes how this combination of resources 1s used to produce an execution
plan. and section 7 deals with the execution of this plan and the transfers of data this often entals. Finally. secuon 8

discusses the umplementation of this approach. as well as limitations and extensions to this work.

2 The Type System

The syntax of WML is “modelled after [anguages of the typed lambda caleulus” ¢ [2}. p 2745 The import of
this 1s perhaps most concisely expressed in [6]:
Each type expression [or rvpe] is associated with a set of entities or structures which is termed its domain. Every

expression of the [anguage... can be mapped to a type expression, whose domain serves to delimit the range of values
the expression can take on.

A complete description of the type system associated with WML is beyond the scope of this document. but in this

section we attempt to convey a sense of it by means of examples

BBN Systems and Technologies Corporation Report No. 7142

The set of types has two major subsets -- those that are independent of the domain. and those that are specific
to the domain. The former set includes the types TV (tuth-value). INTEGERS. STRINGS. REALS. TIMES. and
WORLDS: the latter consists of types constructed from concepts and roles in the domain-model. For example af
VESSEL and LOCATION are domain-model concepts. and SHIP-LOCATION and COMBAT-READY are domuain

roles. then some related ty pes might include:

Type Denotation

VESSEL all vessels

(S VESSEL) all sets of vessels

(TUPLE VESSEL LOCATION) all ordered pairs of vessel, location
(S (TUPLE VESSEL LOCATION)) all sets of such ordered pairs
(FUNC-TYPE VESSEL LOCATION) functions from vessels to locations
(FUNC-TYPE VESSEL TV) unary predicates on vessels

Here we present some types together with examples of logical subexpressions having those types (that 1s.
{TYPEOF expression) = n\pe).

l.type VESSEL
Vincennes
(IOTA ?JX1 VESSEL (COMBAT-READY ?JX1l))

(9

.type (S VESSEL)
(SETOF Vincennes Kennedy)
(POWER VESSEL)
(SET ?JX2 VESSEL (COMBAT-READY ?JX2))
(IOTA ?JX1 (POWER VESSEL) (COMBAT-READY ?JX1))

)

.type (FUNC-TYPE VESSEL LOCATION)

SHIP-LOCATION
(LAMBDA (?JX3) VESSEL (VESSEL-LOCATION ?JX3))

1. type (FUNC-TYPE VESSEL TV)

COMBAT-READY
(LAMBDA (?JX4) VESSEL
(AND (EQUAL (VESSEL-LOCATION ?JX4) "HAWAII")
(COMBAT-READY 2J%4)))

3 Normalizing WML Expressions

WML input expressions are simplified and normalized before they are turther processed by the mulaple
underlying systems (MUS) component. This simplification process has five stages:
1. the extensionahzation of intensional subexpressions.
2. the translation of the entire expression into @ modified disjunctive normal form,

3. the elimination of unnecessary equivalences.

Report No. 7142 BBN Systems and Technologies Corporation

4. tie applicanon of underlying-system-independent rew nites. and

5. the use of pantfuncuons tOT MIPros ing responses.

These stages occur sequentially. and -- as the system is currently implemented -- must be done i the order presented

here. In this section, we discuss each of these stages i some detal

2.1 Extensionalizing intensional Subexpressions

The first stage in normalizing a WML expression is the extensionalization of the logical tormi’s intensional
subexpressions. Most underlying systems, whether they are databases. expert systems, or other apphcations
programs, are extensional. Those that do take time and’or possible worlds into account tend to do it in a very
discrete fashion. For example. the Navy's Integrated Data Base (IDB) divides the temporal conunuum for ships’
combat-readiness ratings into previous-readiness. current-readiness. and projected-readiness: a BBN object-omernited

simulator supports hypothetical worlds. but maintains discrete world-states in a tree-like hierarchy.

This discreteness makes 1t possible to “extensionalize” many intensional subexpressions (ideadly all of them')

in the following manner: given an wntensional context (r.e.. an intension together with aits time and world indices).

every predicate within the intensional expression "absorbs™ the time/world informacdion. either (11 by replacing it

Lo

with a related but time- (or world-) specific predicate. or (2) by adding temporal/world-related intormation to the
P p 3 g p

predicate’s argument hist.

For example. the expression
((INTENSION (SHIP-LOCATION ?JX1 ?JX2)) 13-JULY~1965 DEFAULT-WORLD)

might, according to the first of these medicds. be extensionalized as

(PAST-SHIP-LOCATION ?JX1 ?JX2)
assuming that PAST-SHIP-LOCATION is a domain model predicate and that there is appropriate machinery for
choosing 1t on the basis of the ume index. This approach loses informaton, of course -- such a process of
extensionalization could not take place unless 1t is certain that no underlying system would be interested n the
specific ime index. that is. that the new predicate (PAST-SHIP-LOCATION) 15 sufficient for the purposes of any

underlying system.

Alternatively, die indexical information could be absorbed into the predicate argument structure. as in
(SHIP-LOCATION-AT-TIME 2JX1 ?JX2 13-JULY-1965) .
This approach preserves the information: underlying systems are free to use the time argument. to infer from it a

predicate like PAST-SHIP-LOCATION. or to ignore it altogether.

At the time of this writing. the implementation of extensionalization is incomplete, and for the moment
assumes that no predicate cares about time or world indices. Thus the intensional expression would simply be

extensionalized as
(SHIP-LOCATION ?JX1 ?JX2).

BBN Systems and Technologies Corporation Report No. 7142

The process stensionalization. as charactenzed here. apphes to more complex intenstons. as well one
may do a recursive walk through anintension. rewnting predicates fay above. for example) on the basis of the ume

and world indices.

3.2 Disjunctive Normal Form

The second stage of normalization ts the transtation of the extenstonalized WML expression to a4 somew hat

simplified logical expression in a modified disjunctive normal form (DNF).

The expression is translated nto a disjunctive normal form for two main reasons. We normualize the
expression {reducuty the number of embedded subexpressions. for examples in order to simplify the process of
matching vanous preces of 1t to underlying system capabilities. We choose to use a disjunctive pormal form
because:

¢ In the simplest case. an expression in disjunctive pommal form is simply a conjuncuon of clauses, a
partucularly easy logical form to cope with.,

¢ Even when there are disjuncts. each can be individually handled as a conjunction of clauses. and the
results then combtned together via union. and

¢ Bringing disjunctions to the top level allows pattems to match 1n many cases where 1t would otherw ise
not be possible. For example. given the (non-normalized) pattern

(AND (OR (IN.CLASS ?JX1 SUBMARINE)
(IN.CLASS ?JX1 AIRCRAFT))
(LENGTH ?JX1 ?JX2))

a service secking to match the pattem
(AND (IN.CLASS <x> SUBMARINE)
(LENGTH <x> <y>))
could not match. The DNF, on the other hand.

(OR (AND (IN.CLASS ?JX1l SUBMARINE)
(LENGTH ?JX1 ?JX2))
(AND (IN.CLASS ?JX1 AIRCRAFT)
(LENGTH ?JX1 ?JX2)))
allows the match to take place. by keeping the relevant information together. In a disjunctive normal
form. each disjunct effectively carmies all the information necessary for a distinet subquen

A standard disjunctive normal form 1s a disjunction of conjunctions of predicates or negated predicates: no
vanables in such an expression are explicily quantified. and all are assumed to be imphicitly universally quantfied.
Existentially quantified vanables have been replaced by skolem terms noting some individual instantiation of the

vanable.

The modified disjunctive normal form differs from a standard DNF in several respects:

¢ There is a response clause for every query: that is. an additional predicate whose arguments are the
vanables for which we want returned values. In a query requesting a set of objects (e g. "Which ships
are in the Indian Ocean”") the argument in the response clause will be the vanable denoting the set in
question. The same 1s true for queries requesting individuals (e.g. "the ship whose speed is 30 knots™):
the resulting logical form will seek all possible individuals that meet the same descnption

Report No. 7142 BBN Systems and Technologies Corporation

In a yes/no or existential query. the response clause will contain all vanables in the query. since any
instantiation ot all the gqueny vanables means an affirmative answer: the inabihty to find ansy such
nstantiation medans an answer in the negative. In such cases. a particulur vanation on the response
predicate 1s used: rather than using the special predicate RESPONSE. we use the special predicate
VALLE-EXISTS-RFESPONSE nstead: this preserves the information that the query 's intent 15 to find out
if values exist, rather than to have them returned !

¢ All funcnonal terms must appear as predicates: if P is a binary predicate and Q is a unary function. then
Pix, Qnvy) must appear as Prv 2y and Q'ov. 2) where Q'ty. 2y is true ift Qev)=z. For example. the
clause
(GREATER-THAN (SPEED-OF ?JX1) 30)
will appear as

([AND] (SPEED-OF ?JX1 ?JX2)
(GREATER-THAN ?JX2 30))

o Similarly. provision s made for complex terms like database aggregates: for example. cardinality.
average. and sum Such complex terms may only appear as the first argument to a speaial predicate
called IS-TERM. the second argument 1s alwayvs a variable that represents the term For example. if the
logacal expression asks for the cardinality of the ships in the Indian Ocean. we would use the toliowing
clause:

(IS-TERM #S (CONTEXT
:OPERATOR CARDINALITY
:OPERATOR-VAR ?2JX2
:CLASS-EXP
((IN.CLASS ?JX2 SHIP)
(SHIP-LOCATION ?JX2 "INDIAN OCEAN")))
2JX1)
(RESPONSE ?JX1)

¢ There is no implicit assumption of universal quantification for unquantified vanables -- expressions in
the moditied DNF may contwn unisersal quantification.
¢ Existential quantifiers are removed. not by replacing existentially quantified vanables with skolem

terms. but simply by removing the explicit existential quantification. The resuling unquantified
varables. along with all other unguantified vanables tn the form, are considered to be gueny quantified

The term yuery quanzfied refers to vanables for which we would like to get all possible instantiations
Such vanables are nerther existentiadly quantified (stnce we're anterested 10 ali instantiatiensy nor
universally quantitied ssince universal quantificaton has no nouon of returming valuesi. this kind of
quantification 1s more like that ot the vanables in a PROLOG expression

Notice that. because universal quantifications are not removed. there 15 no need to skolemuze
exastentially quanufied vanables appeanng within the scope ot universal quantifiers.

The following 15 a speaification of the modified disjunctive nomal form. Square brackets ([indicate
optional elements. Contexts are objects with intemal components (implemented as LISP structures) ~- these objects

represent distnct logical environments whose intemal components must be kept separate from the remander ot the

expression.
expression D= ([AND] clause* [response-clause])

'A Cooperative svstem may stll return the alues it they et for example, "Are any ships C177 mught lead to the response Yes the C1 shup.
dre

_j

BBN Systems and Technologies Corporation Report No. 7142

clause - (predicate arg*) [
context-clause i
is~-term-clause |
in~class-clause

response-clause :- ("ESPONSE var') | (VALUE-EXISTS-RESPONSE var™)
context-clause? :- disjunction-context |

negation-context |

quantifier-context

disjunction-context :- #S(CONTEXT

:OPERATOR OR

:CLASS-EXP (clauset)

[:FREE-VARS (var*)]

[LOCAL-VARS (var™')])
negation-context :- #S (CONTEXT

:OPERATOR NOT

:CLASS-EXP clause

[: FREE-VARS (vart)]

[:LOCAL-VARS (var*)])
quantifier-context :- #S (CONTEXT

:OPERATOR FORALL

:OPERATOR-VAR var

:CLASS-EXP expression

:CONSTRAINT expression
[: FREE-VARS (var*)]

[:LOCAL-VARS (var?)])
is-term-clause - (IS-TERM term-context wvar)
term-context - #S (CONTEXT

:OPERATOR term-context -operator

:OPERATOR-VAR var

:CLASS-EXP expression

:CONSTRAINT expression

: STAT-VAR? var

[: FREE-VARS (var®)}

[:LOCAL-VARS (var')])
in-class-clause :- (IN.CLASS var simple-type)
arg i- var | constant
var .- 2JX1 | 2JX2 | ?JX3 |

I . - .
“Notice that the contents of & context object depends upon the operatorr for example. in a quannfier context te.g FORALLL the

class-expression ficld (class-expy v an expression, whereas within a negation context. that field contans a clause
N ;)
This field 1s not currently used. but s intended to provade s place to store an additional vanable, 1t the syntax of the operator requires =

e ————

Report No. 7142

term-context-operator
simple-type 1=
predicate i-

constant -

EBN Systems and Technologies Corporation

:~ CARDINALITY | AVG | SUM |
domain-model-concept-name | Dpe-sYSIEM-&il - pe
domain-model-role-name | npe-system-funec -t pe

npe-svstem-individual | ostring | onumber

3.3 Eliminating Equivalences

Occasionally. alogical expression will include unnecessary equivalences between termys -- equating 4 constant

with a vanable. for example. and then using the vanable elsewhere in the expression where the constant would do

just as well Tty helpful to eliminate such equivalences early 1n processing.

Consider the following expression. resulting from the query "What are the readinesses of the cruisers that are

not C177:

(AND (EQUAL ?Jx109 ?2JX110)
(IN.CLASS ?JX111 CRUISER)
(VESSEL~OVERALL-READINESS-OF ?JX111 ?JX110)
#S (CONTEXT :OPERATOR NOT
:FREE-VARS (?JX%X110)
: LOCAL-VARS NIL
:OPERATOR-VAR NIL
:CLASS~-EXP (EQUAL ?JX110 C1l)
:STAT-VAR NIL
:CONSTRAINTS NIL)
(IN.CLASS ?JX110 READINESS-RATING)
(RESPONSE ?JX109))

expression without changing its mearuny. The resulting expression is

(AND (IN.CLASS ?JX111 CRUISER)
(VESSEL-OVERALL-READINESS-OF ?JX111 ?JX207)
#S (CONTEXT :OPERATOR NOT

:FREE-VARS (?J%207)
: LOCAL-VARS NIL
:OPERATOR-VAR NIL
:CLASS-EXP (EQUAL ?JX207 Cl)
:STAT-VAR NIL
:CONSTRAINTS NIL)
(IN.CLASS ?JX207 READINESS-RATING)
(RESPONSE ?J%207))

Notice that a new vanable. 7JX207. has replaced the equivalence class {2JX109. 7JX110}.

Here the vanables 7JX109 and 7JX110 are equated. the elimination of that equivalence simplifies the

Not all statements of equality are unnecessary: for example. the query "Are there (exactly t three C1 crutsers ™

results in the following expression:

BBN Systems and Technologies Corporation Report No. 7142

(AND (VALUE-EXISTS-RESPONSE 2JX210)
(IN.CLASS ?JX210 CRUISER)
(IS-TERM
#S (CONTEXT :OPF¥RATAR CARDINALITY

:FREE-VARS NIL
:LOCAL-VARS NIL
:OPERATOR-VAR ?JX210
:CLASS-EXP NIL
:STAT-VAR NIL
:CONSTRAINTS NIL)
2J%219)
(EQUAT 2JX219 3)
(VESSEL-OVERALL-READINESS-OF ?JX210 C1))

Here the clause « EQUAL 2JX219 3) 1s not an equivalence that can be eliminated.

3.4 System-independent Rewrites

At this stage of the nommahization process. the system permuts the application of obligatony rewnte rules.
These rules must be independent of the underlying systems: both pattern and wesult must consist of dom.ain-model

information. and they may not contain any references to structures or data in the underlying systemis).

Rewrite pattemns may seek to match both simple clauses tie.. those that are not contexts:. and context-clauses.
Similarly. results may be either contexts or simple clauses. For examiple. the following rewnte might be used 1t it
was known that the number of subordinates of a manager corresponded to the number of employees 1n a manager’s
department:

(define—simple—:ewrite4
:pattern ((in.class x manager)
(:context
:operator CARDINALITY
:class-exp ((in.class y person)
(subordinate-to y x))))
:result ((in.class x manager)
(department-~of x z)
(employee-count z y)))

Ry ysing this rewnte rule. we transform a query in which one actually counts elements i a set (via the

cardinality term) into one in which a single table lookup 1s used instead.

N
Insimple rewrites. vy, 70 and woare alwars vanables

Report No. 7142 BBN Systems and Techaologies Corporation

3.5 Printfunctions

Often the logical content of a queny does not retlect its desired interpretation For example. a quen as simple
as "Last the cruisers.” if interpreted literally. produces a hisung of the database’s internal representarion for each
cruiser. In the Navy's IDB domuain, this representation s a number called an TUTD -- a number that is almost cenain
to be completely useless to the user as a means of ship identification. What one would rea!!v like 1s tor the system
to be smart enough to interpret the question as "List the names of the cruisers.” Primjuncuons provide just that

functionality .

The printfunction machiery s quite simple. With certain classes of objects (e.g.. the domain-model concept
VESSEL) one associates a specificavon for how members of that class should be presented to the user. called a
printfuncrions list. Each element of the pnntfuncuions list teach printfunctiony is either (1) the name of a domain-
model role. or (2) the special symbol :(IDENTITY. As a postprocessing step of the normulization. the vanables on
the response list are examined. and a new response list created as follows:

Let the new response list begin as an empty list
For each variable v on the original response list
Let fip¢e be the variable’'s type
If npe has no printfunction list associated with it
Add v to the new response list
Else
For each element pfn in the npe’s printfunction list
If pfn is :IDENTITY
Add v to the new response list
Else pfn is a domain model role:
Let n¢ew be a new variable
Add the clause (pfnvnew) to the query itself
Add the variable new to the new response list

Pnntfunctions are mhented -- 10 the examples in the following section. responses mnvolving ship classes like
crutser and wireraft-carmer are always expressed as responses involving the names of the ships because the class

VESSEL ithe top-level class for ships) has the pnntfunction hist (NAMEOF) associated wath it

3.6 Examples of Normal Form

the exampies in this section consist of @ WML expression. followed by its DNF. and then followed by the
nomalized form after rewrites and printfunctions have applied (if there was any change).

1. "Last the ships."

T R R R R I ETEE———————SSL—S—,

BBN Systems and Technologies Corporation Report No. 7142

(BRING-ABOUT
{ (INTENSION
(EXISTS ?JX1 LIST

(OBJECT.OF ?JX1 (IOTA ?JX2 (POWER VESSEL) T))))
TIME WORLD))

Normalized expression:

(AND (IN.CLASS ?JX1 LIST)
(IN.CLASS ?JX2 VESSEL)
(OBJECT.OF ?JX1 ?7JX2)

(MEMBER ?JX1 2JX3)
(IN.CLASS ?JX3 (POWER EVENT))
(RESPONSE 2JX3))

Expression after rewrites and printfunctions have applied:

((RESPONSE ?JX70)
(NAMEOF ?2JX2 ?2JX70)
(IN.CLASS ?JX2 VESSEL))
2. "Which ships are C17"
(QUERY
((INTENSION
(PRESENT
(INTENSION
(IOTA ?JX4 (POWER VESSEL)

(VESSEL-OVERALL-READINESS~-OF ?2JX4 C1)))))
TIME WORLD))

(AND (IN.CLASS ?JX4 VESSEL)
(VESSEL-OVERALL-READINESS-OF 2JX4 C1)
(RESPONSE 2JX4))

((RESPONSE ?2JX72)

(NAMEOF ?JX4 ?JX72)

(IN.CLASS ?JX4 VESSEL)
(VESSEL-OVERALL-READINESS-OF 2JX4 Cl))

3. "Which cruisers are not C17"

10

Report No. 7142 BBN Systems and Technologies Corporation

(QUERY
((INTENSION
(PRESENT
(INTENSION
(IOTA ?JX8 (PCWTR CRUISER!)
(NOT (VESSEL-OVERALL-READINESS-OF 2JX8 C1))))))
TIME WORLD))

(AND

(IN.CLASS ?2JX8 CRUISER)

#S (CONTEXT
:OPERATOR NOT
:FREE-VARS (?JX8)
:LOCAL-VARS NIL
:OPERATOR-VAR NIL
:CLASS-EXP (VESSEL-OVERALL-READINESS-OF ?JX8 C1)
:STAT-VAR NIL
:CONSTRAINTS NIL)

(RESPONSE ?JX8))

((RESPONSE ?JX73)
(NAMEOF ?JX8 ?JX73)
(IN.CLASS ?JX8 CRUILZR)
#S (CONTEXT
:OPERATOR NOT
:FREE-VARS (?JX8)
:LOCAL-VARS NIL
:OPERATOR-VAR NIL
:CLASS-EXP (VESSEL-OVERALL-READINESS-OF ?JX8 Cl)
:STAT-VAR NIL
:CONSTRAINTS NIL))

4. "Are any carners harpoon capable?”
(QUERY

((INTENSION

(PRESENT

(INTENSION
(EXISTS ?JX20 (POWER AIRCRAFT-CARRIER)
(HARPOON-CAPABLE-VESSEL ?JX20)))))

TIME WORLD))

(AND (VALUE-EXISTS-RESPONSE ?2JX20)
(IN.CLASS ?JX20 AIRCRAFT-CARRIER)
(HARPOON-CAPABLE-VESSEL ?JX20))

((VALUE-EXISTS-RESPONSE ?JX74)
(NAMEOF ?JX20 ?JX74)

(IN.CLASS ?JX20 AIRCRAFT-CARRIER)
(HARPOON-CAPABLE -VESSEL ?JX20))

5. "Are the cruisers and the carriers ¢

11

BBN Systems and Technologies Corporation

(QUERY
{ (INTENSION
(PRESENT
(INTENSION

(VESSEL-OVERALL-READINESS-OF

(SETOF

(IOTA ?JX56
(POWER
(SET-TO-PRED
(IOTA ?JX59 (POWER CRUISER) T)))

T)

(IOTA ?JX57 (POWER AIRCRAFT-CARRIER) T))

cin
TIME WORLD))

(#S (CONTEXT
:OPERATOR OR

:FREE-VARS (?JX64)
:LOCAL-VARS (?JX56 2JX59 ?JX57)
:OPERATOR-VAR NIL

:CLASS-EXP
((AND (EQ ?JX64
{IN.CLASS
(AND (EQ ?JX64
(IN.CLASS
:STAT-VAR NIL

?JX56)

2JX56 CRUISER))

2JX57)

2J%57 AIRCRAFT-CARRIER)))

:CONSTRAINTS NIL)
(VESSEL-OVERALL~READINESS-OF ?JX64 C1)
(VALUE-~-EXISTS-RESPONSE ?JX64))

6. "How many cruisers are in the Indian Ocean’”

(QUERY
{ (INTENSION
(PRESENT
(INTENSION
(CARD (IOTA

?JX65 (POWER CRUISER)

(IN.PLACE ?JXé5 INDIAN.OCEAN}}))))

TIME WORLD))

(AND (IS-TERM
#S (CONTEXT

:OPERATOR CARDINALITY
:FREE-VARS NIL
:LOCAL-VARS NIL
:OPERATOR-VAR ?JX65

:CLASS-EXP

((IN.CLASS ?JX65 CRUISER)
(IN.PLACE ?JX65 INDIAN.OCEAN))

:STAT-VAR NIL
:CONSTRAINTS NIL)

?2JX69)

(RESPONSE ?JX69))

12

Report No. 7142

——;

Report No. 7142 BBN Systems and Technologies Corporation

4 Servers and Services

[n an environment with multiple underlying systems, one niust have a umform way to descnbe the capabilities

ot cach underlyving system. We adopt terminology similar to that of (3] and [4].

A server 1s a functional module typically corresponding to an underying system or a major part of an
underlying system. In the application of the MUS system being descnibed here. there are two servers -- one named
:ERL. which supports access to a relational database. and one called :LISP, which supponts calls to arbitrary LISP
functions. Each server has associated with 1t:

L. A number of senvices: objects describing a particular piece of functionality provided by a server.
Specitying a ser.ice in MUS provides the mapping from fragments of logical form to fragments of
underlying systc m code

2. An execution planner: a function that takes a piece of the solution to a query (see section 5) and builds
from it a parttal execution plan (see section 6)

3. An executor: a function that takes a partial execution plan together with input data. executes the plan.
and produces output data (see section 7).

A service is an object consisting of the following components:
e Name: asymbol used to umiquely identity the service
¢ Owner: the name of the sener to which this service belongs.
e Cost: ascalar value indicating the cost of this service: if unspectfied. unit cost (1) is assumed.

¢ Inputs: a list of pattern variables. each of which has associated with it a name. a type. and a constraint.
The type indicates the extent to which the input 1s optional: a type of GEN indicates that input to thus
vanable 1s optional. since this service can generate values for the vanable: a type of .TEST indicates
that input must be provided for the vanable, since this service 1s only capable of applying some test to
the tnput values: a type of :TEST-ALL indicates not only that input to this variable is obligatory, but that
by the time the data for this variable reaches this service it must be fiitered as completely as possible --
thus is often the type for inputs to services that do response presentation, for example.

The constraint associated with the vanable is used for pattem-matching. The possible constraints
include:

L (symbol™): alist of symbols. Items matching this variable must be EQ to a symbol on the list.

2 ¢string™): a hist of strings. [tems matching this vanable must be STRING= to a string on the
list.

[

.rvpe: a simple type. An item will match this vanable if the type (i.e.. type-system type -- see
section 2) of the item is a subtype of npe. (The type of a Janus variable v (s nype if the clause
(IN.CLASS v rvpe) appears in the (normalized) query.) This constraint does not pay attention to
whether or not a type denotes a set -- if npe 1s (S SHIP) (a set of ships), an item with type SHIP
will match. and vice-versa.

4. function: a function than takes one argument. An item dem will match dus vanable if «funcall
function item retumns a non-N1L value.

5. (SUBTYPE-OF npe): asubtype specification. Items matching this vaniable must themselves he
rypes in the npe system: furthermore. they must be subtypes of ape. For example. a variable
with constraat (SUBTYPE-OF SHIP) would match CRUISER (since CRUISER 15 a subbype of

13

BBN Systems and Technologies Corporation

SHIP). Notice how thus differs from (3). above:

(SUBTYPE (TYPEOF iten) nper must be true. whereas here

(SUBTYPE item npe) must be true.
6. NIL, ANYTYPE, T these will match anything

Report No, 7142

constraint 1s that
constrant s that

¢ Outputs: a list of pattern vanables. idenufying the outputs of the service. Outputs need not have been

inputs. nor must 1nputs to the service also be outputs.

e Pattern: a pattem specification which will match some piece of the logical form.

The pattemn

specification must be a list, each element of which is the pattern for either a simple clause or for 4
context-clause. Within patterns. one can not have a varable predicate: however. the arguments 1o
predicates musr be pattern variables (see inputs, above. for a description of how to constrain what these

vanables may match).

A pattern specification for a context-clause (context-spec) takes nne of two forms.

(1context :operator operator
[:free-vars (var*)]
[:operatoc-var var]
[:stat-var var]
[:class-exp expression]
[:constraints expression])

For this form of partern specificanon, the context-spec’s operator must match the context’s operator.

and recursive calls to the matcher must return successfully for the :class-exp and :constraints.

(:context :operator operator
[:covers-owner server-namel)

This second torm of pattern specification allows one to say. "This service will match am context whose
operator is operaior. as long as there are solutions of the :class-exp subexpression and of the
:constraints subexpression such that both solutions belong entirely to server sener-name.” For
example. a context-spec for operator CARDINALITY specitying that it covers owner .ERL says. in
effect. "Thus service can take the cardinality of any set. as long as that set can be obtained entirely by
calls within the :ERL server.” This is a useful method of providing general services that handle

aggregate operations within a single server.

e Method: a code fragment or other information that the server will use in generating a partial execution
plan from a solution that utilizes this service. What goes in the method slot depends enurely on the

particular server to which the service belongs.

For fast access. services are indexed by the predicates in their pattern. That is. for every clause (P v vy in the

pattern of some service S. there is a pointer from the symbol P to the service S. An exception to this is the IN.CLASS

predicate: if a service's pattemn includes (/N.CLASS x C), the pointer will be from the symbol C rather than the

symbol IN.CLASS: that is, the indexing proceeds as if the clause were C(x).

As an example, consider the service-object corresponding to the :ERL server’s ability to access a table

associating shups with overall combat-readiness values:

14

Report No. 7142 BBN Systems and Technologies Corporation
NAME : VESSEL-OVERALL-READINESS-OF859
OWNER: :ERL
INPUTS: (<x> <y>)
OUTPUTS: (<x> <y>)
PATTERN: ((VESSEL-OVERALL~READINESS-OF <x> <y>))
COST: NIL®
METHOD : ({(VESSEL-OVERALL-READINESS-OF X Y))

(BINDTOERL ((X IUID) (Y RDY)) IID.RDY))

The name and owner fields are swraightforward: the service has a unique name and belongs to the server
named (ERL (in a current imptementation. :ERL is the server that can access the Navy's relational database). The
pattern is also panticularly simple. a single clause. Note that the vanables printed as <x> and <y> are objects:

NAME : X
TYPE: :GEN
CONSTRAINT: VESSEL

NAME : Y
TYPE: :GEN
CONSTRAINT: READINESS-RATING

Because both are type :GEN, this senvice does not require input values for these vanables. The pattern will match
clauses only when the type of the first argument (matchung <x>) is VESSEL. and the type of the second argument
(matching <y>) is READINESS-RATING.

The method field for services belonzing to the :ERL server contains two pieces: first. the pattemn that was
matched; second. a code-like fragment that relates vanables to fields and specifies a table from which to draw those
fields ®

The scheme for indexing servives establishes a pointer from the symbol
VESSEL-OVERALL-READINESS-OF to this service.

5 Formulation

The job of the formulation algonthm is to locate all services that might be resources for satsfying a request.
and find the best possible combination of services from that set. where "best” tvpically means lowest-cost. This 15

inherently a search problem.” Previous approaches to the formulation problem have included using NIKL

“The cost field 1s unspeified. therefore this service is assumed 10 have unit cost.
®This is a simplification: the table specification may be a fragment of ERL code, complete with JOINs, SELECTs, ew.

"The formulation problem, when its 1put is a conjunction of non-negated simple clauses, can be viewed as a kind of set-covering problem
{SCP), which 1s NP-complete [1). The SCP (an be formulated as follows: given aset S = {s). s, ... s 1 and a collection C = (C, C,. ... C_}
such that each C 15 atprapers subset of S and each C has a postive cost ¢~ tind the subset 7 of C such that ¢ 1) the union over Cequals S, and
2y the sum of the costs over C s minimuzed In the formutation problem. S 1s the set of clauses. and each element of Cas asenice.

—
N

BBN Systems and Technologies Corporation Report No. 7142

classification [4] and a kind of A* search [3]. The approach here resembles a beam search. and wvses a greedy

heunstc.

The first two subsections describe two objects. parrial solwrions and marches, that are important at the

implementation level: the thurd section describes the formulation algonthm.

5.1 Partial Solutions

The main structure used in the formulaton stage is the partial solution, an object used in building up a
collection of services for a given mnput expression. [nitigl partial solutions are created from individual services:
otherwise partal solutions are created by combining other partial solutions. Each of these obiects his the tollowing
components:

e Expr: clauses from the logical form that this solution does nor cover. In the empry solution this field 15
equal to the input expression: (n a complere solution this field 1s empty.

¢ Cost: the combined cost of all the component solutions making up this solution.

¢ Input-links: the mapping from vanables in the logical expression to vanables in the soluton’s
service(s).

¢ Output-links: the mapping from variables in the solution’s service(s) to vanables in the logical
expression.

¢ Intecnal-partials: the collecton of mitial (sometimes also called primitive) parial solutions trom
which this partial solution was constructed.

¢ Matches: the collection of match objects belonging to this partial solution. There is one match object
for each clause matched by a service. See section 5.2,

e Local-matches: this field is currently unused. but is intended for use when optional system-dependent
rewntes are introduced.

® Goodness: value based upon the sum of the cost of component solutions and other factors (e.g.
communication cost between component solutions)

3.2 Matches

A march ts an object built during pattern-matching. Matches are also used dunng later stages of processing.
since they provide the link between a partial solution and its component services. Each match object comprises:
¢ the service. part of whose pattemn was matched

¢ a "name”, consisting of a list of the service and an instance number. used to distinguish different
instances of the same service (for example. when one service matches two different parts of the same
pattern -- see page 19}

e the clause in the input expression that was matched
o the clause in the service's pattem that did the matching

o the variable mappings produced by the match (see also inpus-links and ourput-links. above)

16

Report No. 7142 BBN Systems and Technologies Corporation

e embedded partial solutions created via recursive callis) to the formulation dgonthm: applicable onh
when the matched clause 15 a context. and theretore has intemal subexpressions.

¢ embedded vanable muppings assoctated with the embedded partial selutions

For example. consider a service named NAMEOF 328, whose pattern is ((NAMEOF <x> <y>)). and an input
expression contaiung the clause (NAMEOF /X1 "VINCENNES”). The match object created by the pattern matcher
will look hike:

SERVICE: [Service: NAMEOF328]
VAR-MAPPINGS : (("VINCENNES" . Y) (2?2JX1 . X))
PATTERN: ((NAMEOF <x> <y>))

CLAUSE : (NAMEOF 2JX1 "VINCENNES")
EMBEDDED-SOLUTIONS : NIL

EMBEDDED-MAPPINGS: NIL

As a more complex example. consider a service named GENERAL-CARDINALITY . belonging to the LISP
server, that matches cardinality expressions. The query "How many C1 crutsers are there?” produces the request

(AND (IS-TERM

#S (CONTEXT
:OPERATOR CARDINALITY
:FREE-VARS NIL
:LOCAL-VARS NIL
:OPERATOR-VAR ?2JX1
:CLASS-EXP ((IN.CLASS ?JX1 CRUISER)

(VESSEL-OVERALL-READINESS-OF ?JX1 Cl))

:STAT-VAR NIL
:CONSTRAINTS NIL)

2JX5)

(RESPONSE ?2JX5))

The match object created by matching the GENERAL-CARDINALITY senvice to the first clause 15

17

BBN Systems and Technologies Corporation Report No. 7142
SERVICE: [Service: GENERAL-CARDINALITY]
VAR-MAPPINGS: ((<c.GENERAL-CARDINALITY.5> . ?JX5))
PATTERN: ([Context-spec: CARDINALITY]})
CLAUSE:
(IS-TERM

#S (CONTEXT
:OPERATOR CARDINALITY
:FREE~-VARS NI1L
: LOCAL-VARS NIL
:OPERATOR-VAR ?2JX1
:CLASS-EXP
((IN.CLASS ?JX1 CRUISER)
(VESSEL-OVERALL-READINESS-OF ?JX1 C1l))
:STAT-VAR NIL
:CONSTRAINTS NIL)
?2JX5)
EMBEDDED-SOLUTIONS: ([PS:9.0) NIL)
EMBEDDED-MAPP INGS:
(((CRUISER . <w.CRUISER23.2>)
(?JX1 . <x.CRUISER23.2>)
(?JX6 . <y.NAMEOF328.3>)
(?JX1 . <x.NAMEOF328.3>)
(Cl . <y.VESSEL-OVERALL~READINESS-OF859.1>)
(?JX1 . <x.VESSEL-OVERALL-READINESS-OF859.1>)
((?JIX6) . <X.VALUE-EXISTS-RESPONSE.4>))
NIL
((?JX1 . <X.GENERAL-CARDINALITY>)))

The expression embedded in the cardinality clause tcfass-exp) was solved recursively 1n the course of the matctung *
The solution. which retnieves all the C1 cruisers. 1s the first element in the EMBEDDED-SOLUTIONS field. above
The second element in EMBEDDED-SOLUTIONS s NIL because there was no constrant expression -- had this
context been. say. a universal quanufication (FORALL var class-exp constrainy,. then this second element would

have been the solution to the constrarnts expression

5.3 The Formulation Algorithm

The formulation algonthm 1s shown below.

K
Embedded soluticons are computed only once. of course. rezardless of how much pattern-matching goes on

13

Report No. 7142 BBN Systems and Technologies Corporation

Find the set P of mrna! purtiul solutions for request expression.
Choose the "best” n elements p,,...,p, in P, and

let focus set F = (p;. ... ,P,}
While no member of F is a complete solution

Choose the n best elements £l, .. .,f.n of F
For each f1
"Age" f., reducing its goodness by some factor

Choose the best element p from P that can be combined with f
Let £ ' = combine-partials (f ,p)
Add £’ to F
If no member of F was expanded,
Report that no solution was found

Else
Let F = the best n elements of F, plus complete solutions in F

Each imital pariial solutionas essenuadly annstance of a service whose pattern his been completely matched
by part of the expression. These are tound by first restricung the search to those services matching some predicate
appeanng 1n the pattern (recall the discussion of how services are indexed. w0 section <. then doing more complete
pattemn-matching on the restncted set. The set of mitiad parudd solutions includes all possible wavs to match a

service 1o a pattem. Forexample. given an expression

(AND (P ?JX1) ;clause (1)
(P ?2JX2) rclause (2)
(Q ?2JX3)) ;clause (3)

and a senvice with the pattern
(AND (P <x>)
(Q <y>))
there will be rw o imitial partial sofutions produced. one in which the service has mutched clauses (1 and (20, and the

other 1n which the service has matched clauses (1 and 13y

Beginming with a focus set of imtial partial selutions. the tormulation algorithm secks to expand sotutions n
the tocus set. "Aging” elements in the focus set -- that 1s. reducing thetr goodness by some small tacter each
tteranon -- results in theowiny out aonpraductve solutions after 4 while. This algonthm 1y not complete 1t as
possible that no member of the instial focus set will provide a successtul starting pont. one might consider adding a
step in the wiile loop that allows new starting points to be added to the focus set. Nor does the greedy heunstic used

guarantee finding the optimal solution

Parnial solutions can onhy be combined if there 1s a connection between them one vanable provided as output
by one soluton must be desired as nput by the other. The combmnauon does not. however, cement these
input output links. establishing such data dependencies is the job ot the execution planner tsee section 6. Atter
combiming two partial solutions. the resulting partial selution’s input s the wion of the component solutions” npat...

and the outputs include any output provided by a component partiat solution

19

R AI—————

BBN Systems and Technologies Corporation Report No. 7142

3.4 Formulation and Embedded Contexts

Notice that the formulation algonthm does not include recursive calls to itself. Culls to the formufation
algonthm for handling embedded expressions (i.e.. the class expression or constrant expression of 4 context; are
made as pant of the pattern-marching process (see secuon S 2). It is necessary to find all the possible ways that the
embedded expressions can be solved. before doing pattemn-maching at the top level. When secking services that will
cover a context clause. the pattemn matcher

1. Finds the set S of services whose pattemn includes some cornext-specification whose operator matches
this context’s operator (e.g., CARD, FORALL)

2 Finds a collection” C, of solutions to the context's class expression by recursively calling the
formulation algonthm on 1t

o

. Finds a collection C, of solutions to the context’s constraint expression, in the same manner

4. Takes the cross-product of C, and C,. to form a set C" of embedded (of nternali solutions tor the
context clause. Each embedded solution represents one possible way to solve the embedded
expressions. !¢

rh

. For each service 1n S and for each embedded solution in C. checks whether S matches the context
clause asswminyg that parmcular embedded solution.

Some services in S make use of the embedded solution information in matching elements in this set of
pattern clauses (see the discussion of the pattern field in senvices. specfically the use of the
:COVERS-OWNER parameter, in section 4). Other services do not use the embedded solution
informauon for pattem-matchung. In either case. of course. the embedded solutuonis) will be ased for
execution planning

6 Execution Planning

The job ot the execution-planning phase ts to take a complete solution produced by the formulation algonthm
and produce an exvecution plan that makes use of the resources specified by the solution and prosides a specihication

of the dataflow amonyg those resources

“Revall that the formulation alg nithm produces nsolutions
OAn exception 1o this s the distune ion conte i which the (lass expression field contans an arburanly long hist of disjuncts, eaxch of whych

must he solved recursively Tt eah disjurt can be solved in several ways s impractical to take the cross-product. instead. we create only one
embe dded solution using the best solutien tor esch doajurnct

20

Report No. 7142 BBXN Systems and Technologies Corporation

6.1 Partial Execution Plans

An execution plan is a sequence of partial execurion plans. cach of which consists of the following
¢ Owner: the nume of the server to which thus partal plan belonygs. and which will execute this nartial
plan
¢ Inputs. the inputs s 1denufied by the Janus vanables (prefixed by 7?IX" 1 n the request that this partial
plan expedts to recerve.
¢ Qutputs. the outputs tabvo identified by Janus vanables) that this paruial plan will produce
e Wrapper: a place to hold the data passed to this partial plan by other partiad plans. The wrapper is an
object that includes:
* A list of srreams -- pointers back to where the data came trom
* For each stream. a list of lahels -- each label is a Janus vanable from the request
* For each stream. a hucker contamning the actual tuples passed in as data
For example. the wrapper for a partial execution plan (after a previous partial plan has been executed;
might look hike this.

#S (WRAPPER :STREAMS (#S (PARTIAL-EXECUTION-PLAN...))
:LABELS ((?JX1 ?JX2))
:BUCKETS ((("VINCENNES" 1)
("NIMITZ" 2)
("FREDERICK" 1)...)))

This wrapper has only received nput from one place: the partial plan on the STREAMS list. The data
are in the form of pars -- the first element m each pair is an instantiation of the Janus vanable *JX1 1n
the request. and the second element in each pair is an instantiation of the vanable 7JX2.

¢ Body: the code 1o be executed by the server tie . by the server's execwor function). This code is built
by the senver’'s evecudion planner function.

6.2 Partitioning and Establishing Dependencies

There are two processes 0 crzating an execution plan from a complete soluton: parntioring the solution
according to senver. and setiing up the dependencies among the nodes in the partition, based upon the possible inputs
and outputs of each node There 15 a certain circularity here that makes the process difficult: one can not set up
dependencies unul the solutton is partitioned according to server, yet in order to partition properly (for example. to
split a node belonging to a particular server inte two nodes in order to allow another node to fit between them) one
needs to know what the dependencies are. The current implementation does not handle this issue particularly well:

it parutions first. then attempts to set up dependencies.

Assuming that pariioning has been reasonably done. there is another problem of circularity, involving the
expected wnputs and outputs of each node: one would like 10 be able to operate from a global perspective. using the
expected inputs and outputs to optimally plan dataflow links: on the other hand, at the level of each node. one would
like the global planner to provide the desued inputs and outputs, so as to produce optimal code tor tus node of the

execution plan. In essence. the global level sayvs. “tell me what to expect.” and the local level says “tell me what you

21

BBN Systems and Technologies Corporation Report No. 7142

nced!” The current implementation is bmited as follows: planning at both levels assumes that all nputs are

provided. and all outputs are required.

6.3 Servers' Execution Planners

As discussed in section 3, every server has associated with it an evecurion plunner tunctuon. Execution
planner functions take three arguments:
L. A list of Tanus vartables it can expect to have values for as wnput,
2. A list of Janus variables it should produce as output. and

3. The solution-object for the portion of the query that is to be handled. From the solution object. one
can obtain the component services (and thus their methed slots. which contan the necessary code
fragments) and variable mappings from Janus vanables to service vanables.

These functions should return:
1. Code to be executed by the execution function (see section 7),

2. Reductions from tuples to single vanables. if any (e.g.. if the execution-planner determines that output
vanable 7JX3 should be treated as (mple 2JX! /X2, tor information-passing. then the bst
(2JX3 °JX1 ?JX21s one such reduction). and

3. The Janus variables that the code will produce output for.

7 Execution

The execution phase takes an execution plan (i.e.. a list of partial execution plans:, and iterates through 1t
sequentially:

For each partial execution plan p
Combine the data from the streams in the wrapper of p
Call the execution function for the owner of p
Pass the output tuples (according to the dataflow links of p)
into the wrapper objects of partial plans further on
Return the output provided by the last partial execution plan

7.1 Combining Data

Previous approache« to the multiple systems problem (e.g.. [4] and [3]) have assumed. for the pumpose of
execution. a straightforward dataflow model in which nodes accomplish execution and ares are streams of values.
Unfortunately. the problem of passing and combirung data among multiple systems is more complex than this model
will accommodate. In most cases, it iS necessary to pass sets of tuples rather than sets of values. using a

generalization of the join operation to combine data. There are problems that even this does not address.

22

Report No. 7142 BBN Systems and Technologies Corporation

7.1.1 Passing tuples, not values

Consider a scenano in which the user has requested a table of “the speeds of the shups in the Indian Oceun
that are taster than 20 knots”. and 1in which the resulting solution involves four senaces:
L. Generatre generates pairs ot ships and speeds.
2. Filter-location filters a list of ships according to whether or not they are in a given location.

3. Filier-speed filters a list of numencul speed values according to whether or not they are faster than a
given speed. and

4. Present presents a table of shups and speeds.
In a model in which streams of values are passed. generare will pass a stream of ships to filter-location. which will
pass a filtered stream of ships to present: generate will also pass a stream of speeds to filter-speed. whuch will pass a
filtered stream of speeds to present.

GENERATE
<SHIP, SPEED>
SHIP SPEED
FILTER- FILTER-
LOCATION SPEED
SHIP SPEED
PRESENT

The problem is thus' present has received both ships and speeds, but how can 1t now decide which speeds
belonyg to whuch ships? The relation of ships to speeds was lost because. although pairs were generated by ¢enerate.
they were split up in order to pass the data. once split up. there is no way to put them tack together agan.

An obvious approach to solving this problem is to pass not streams of values, but streams of ruples of values.
never breakung up a wple. This ncreases the volume of data passed. of course. but it does ensure that the

appiopnate relationships are maniained.

Now suppose that the same arcs represent the passing of tuples rather than of individual values Generare

23

BBN Systems and Technologies Corporation Report No. 7142

generates pairs <ship. speed> of shups and speed values. Because filter-location requires the shups. generate passes
all the pairs to filter-location, which filters out those tuples in whuch the shup is not at the appropnate locaton
Filter-location then passes the filtered set of tuples to present. Because filter-speed requires the speed values,
generate passes all the pairs to filter-specd. whuch filters out those tuples in which the speed is too slow.
Filter-speed then passes the filtered set of wples to present.

GENERATE
<SHIP, SPEED>
<SHIP, SPEED> <SHIP, SPEED>
FILTER- FILTER- |
LOCATION SPEED
\'ﬂp SPZED> <SHIP, SPEED>
PRESENT

The situation has improved, in that we have maintained the association between ships and speeds. However.
present has now received two different sets of ship-speed pairs. one filtered according 10 a propenty of the shup. and
the other according to a property ot the speed. How do we combine them?

7.1.2 Join and Cross-join

A solution that works in many cases is a database join across the attributes that the streams have in common.!!
A join effectively takes the cross-product of the incoming seis ot tuples, and then removes from the cross-product
any tuples in which the values of the common attributes are not equal. For example, the join of a set of tuples
<ship. locanion> with a set of tuples <ship. speed> across the attnbute ship will result in a set of tuples

<ship. location, speed>. which will include only values of ship that appeared in both sets of tuples being joined.

It is quite possible that two (or more) streams of input will have no attributes in commocr, and in such cases
join can not be used. In such a situation, one would like to use a version of the join operator that computes the cross

product. but -- because zero attnibutes are held in common -- does not attempt to do the filtering operation.

" thus case. both attributes -- ship and speed-» alue -~ are 1n common. so the join is Just the intersection of the two sets of tuples

24

Report No. 7142 BBN Systems and T chnologies Corporation

For this reason. we use a combining operator called cross-join: when the incoming streams have attnbutes in
common, cross-join 1S equivalent to jein: when there are no common attributes, cross-join is equivalent o the

cross-product.

7.1.3 Problems with cross-join

In some cases. the strategy adopted by cross-join is not appropniate. For example. suppose the user has
requested the cormmanders und destinations of all the ships. and that one server generites pars of
<ship, commander> while anothet generates <ship. destination>. Suppose. further, that each of these servers has

only incomplere information so tht each produces tuples about some ships not known by the other.

SHIP (?3x1l) COMMANDER (?jx2) SHIP (?jx1) DEST (23x3)
VINCENT SMITH VINCENT HAWAII

FOX JONES NIMITZ HAWATI
FREDERICK BROWN FREDERICK SAN DIEGO

In such a case. the cross-join operation will recognize that the ship attribute is held in common by the

incoming sets of tuples. and thus combine the sets of tuples using join:
SHIP (?3jx1) COMMANDER (?jx2) DEST (?3jx3)

VINCENT SMITH HAWAII
FREDERICK BROWN SAN DIEGO

Notice that as a result of join's filtering operation. FOX and NTM[TZ do not appear in the output data. Considenng
the fact that the user requested the commanders and destinations of @// the ships. this is an undesirable result: 1t is
likely that the user wants to see whatever information is available about each ship even if that information s

incomplete.

Thits example serves to illustrate that cross-join is not appropriate in all instances. Unfortunately. there 1s

currently no easy way to identify such cases. For the present timie, cross-join is always used to combine data.

7.2 Servers” Execution Functions

The execution function (or executor) for a server is a function taking the following arguments:
I. A list of tuples representing input values,
2. A sequence of Janus variables identifving the tuple elements. and

3. Code produced by the execution planner.

The execurion function should retum two values:
L. A list i tuples representing output values, and

2. A sequence of Janus vanables identifying the wple-elements.

25

|

BBN Systems and Technologies Corporation Report No. 7142

8 Status and Extensions

8.1 Experience

The MUS compenent described in this documentation has been successfully implemented and used in the
domain of the Fleet Command Center Battle Management Program (FCCBMP), using an intemal version of the
Integrated Database (IDB) -- a relatonal database -- as one underlying resource, and a set ot LISP functions as
another. The system includes more than 800 services, and produces an execution plan for a typical request in
seconds or fractions of seconds: it also reports failure to create an execution plan within seconds (for example. in
cases where no service exists covenng parnt ot a request expression). Queries handled include those involving
negation of simple predicates. existential and universal quantification, cardinality, and the most common
(hsjunctions"z as well as queries that are simply conjunctions of clauses. Both quenies requesting values (actually.

tuples of values are returned) and yes/no quernies are handled.

An earhier version of the system descnbed here was successfully used within an expert system project. in
which Janus provided natural language access to data in Intellicorp’s KEE knowledge-base system to objects
representing hypothetical world-states in a simulation system and to LISP functions capable of manipulating this

data.

8.2 Limitations and Extensions

There are several limitations and possible extensions in the current implementation of the system:

1. Although underlying-system-independenr rewrite rules are supported. underlying-system-dependent
rewrites are not. In order to allow these. it is necessary to modify the formulation algorithm so that.
rather than expanding an intermediate partial solution. one can modify it by applying a system-
dependent rewnite. One would need to avoid combuning partial solutions evolved from different
request expressions, as could be the case 1f different rewmes have applied.

(28]

. The formulation algorithm 1s not complete: it is possible that none of the mitidl parual solutions
chosen as starung points can be expanded wnto a solution that covers the entire request. One might
consider using a different search algonthm (e.g.. a modification of the A* search employed by [3]) or
modifying the algorithm to make it complete.

3. The model of service costs, assuming a single scalar cost value. is too simple for many likely real-
world situations. A better model would distinguish aspects of cost like the rehiability of the service's
data, the cost of communicatung with it. and the service’s nme and space requirements.

4. The current execution madel assumes that the representations of entities are the same in different
underlying systems. This 1s a severe limitation and should be addressed as soon as pessible. There are
three immediately apparent cases:

e Spelling vanations. For example, one system may store the name of a ship as the "CARL
VINSON" while another stores it as "VINSON C".

"2Thoue expressing membership in s set. ez . (OREQ catem! , (EQ cem2,).

26

Report No. 7142 BB\ Systems and Technaologies Corporation

e Ditferent intemal representations. For exaniple. one system may store “the ship atself” ax an 1D
number (¢ g. "01237) while another uses the ship’s name {(e.g. "VINSON C).

o Diffenng data decompositions. For example. one system may store dates as single values e ¢
date="07-12-63") while another stores them as several values (e.g. month=07. day=13
year=65),

5. Error recoven. A single plan is created in response to a request. and if it fails, the system has no
recounse but o report an error. It should be possible to modify the formulanon and execution-planning
phases of processing to allow the creation of altemauve plans. Nouce that this sull does not address
the reasons tor plan failure: if a disk error has been encountered while making use ot a resource. 1t
makes no sense 1o try again with a different plan that requires the same resource.

27

BBN Systems and Technologies Corporation Report No. 7142

References

[Garey. M. R. and D. S. Johnson. Computers and [ntractability - A gwde to the Ticers of NP-Completencss
Freeman. San Francisco. 1979.

(2] Hiarichs. E., D. Ayuso. and R. Scha. The Syntax and Semantics of the JANU'S Semantic Interpretation
Language. In R. Weischedel. D.Ayuso. A. Haas. E. Hinrichs, R. Scha. V. Shuked. D. Stalturd reditors). Research
and Development (n Natural Language Understanding as Part of the Stratezic Compuiing Program. chapter 3,
pages 27-34. BBN Laboratones, Cambndge. Mass., 1987. Report No. 6522

(3] Kaemmerer, W. and J. Larson. A graph-oriented knowledge representation and unification technique for
automatically selecung and invoking software functions. In Proceedings AAAI-86 Fifth Nutional Conference on
Artificial Intelligence. pages 825-830. AAAI, Morgan Kaufmann Publishers. Inc., 1986.

(41 Pavlin, J. and R. Bates. SIMS: Single Interface to Multipie Systems. Technical Report [SI/RR-88-200. ISI.
February, i988.

(5] Stallard. David. Answering Questions Posed in an Intensional Logic: A Mululevel Semantics Approach. In
R. Weischedel. D Ayuso, A. Haas. E. Hinnchs, R. Scha. V. Shaked. D. Stallard (editorsi. Reseurchi and
Development in Natural Language Understanding as Part of the Strategic Computing Progran, chapter 3, pages
35-47. BBN Laboratories. Cambridge, Mass., 1987. Report No. 6522

(6] Stallard. David. A Manual for the Logical Language of the BBN Spoken Lanyuage Sviem. July. 1988,

28

